Задача классифика́ции — задача, в которой имеется множество объектов (ситуаций), разделённых некоторым образом на классы. Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется выборкой. Классовая принадлежность остальных объектов неизвестна. Требуется построить алгоритм, способный классифицировать (см. ниже) произвольный объект из исходного множества.
Классифици́ровать объект — значит, указать номер (или наименование) класса, к которому относится данный объект.
Классифика́ция объекта — номер или наименование класса, выдаваемый алгоритмом классификации в результате его применения к данному конкретному объекту.
В математической статистике задачи классификации называются также задачами дискриминантного анализа. В машинном обучении задача классификации решается, в частности, с помощью методов искусственных нейронных сетей при постановке эксперимента в виде обучения с учителем.
Существуют также другие способы постановки эксперимента — обучение без учителя, но они используются для решения другой задачи — кластеризации или таксономии. В этих задачах разделение объектов обучающей выборки на классы не задаётся, и требуется классифицировать объекты только на основе их сходства друг с другом. В некоторых прикладных областях, и даже в самой математической статистике, из-за близости задач часто не различают задачи кластеризации от задач классификации.
Некоторые алгоритмы для решения задач классификации комбинируют обучение с учителем с обучением без учителя, например, одна из версий нейронных сетей Кохонена — сети векторного квантования, обучаемые с учителем.
Пусть — множество описаний объектов, — множество номеров (или наименований) классов. Существует неизвестная целевая зависимость — отображение , значения которой известны только на объектах конечной обучающей выборки . Требуется построить алгоритм , способный классифицировать произвольный объект .
Более общей считается вероятностная постановка задачи. Предполагается, что множество пар «объект, класс» является вероятностным пространством с неизвестной вероятностной мерой . Имеется конечная обучающая выборка наблюдений , сгенерированная согласно вероятностной мере . Требуется построить алгоритм , способный классифицировать произвольный объект .
Признаком называется отображение , где — множество допустимых значений признака. Если заданы признаки , то вектор называется признаковым описанием объекта . Признаковые описания допустимо отождествлять с самими объектами. При этом множество называют признаковым пространством.
В зависимости от множества признаки делятся на следующие типы:
Часто встречаются прикладные задачи с разнотипными признаками, для их решения подходят далеко не все методы.
Классификацию сигналов и изображений называют также распознаванием образов.