机器学习与数据挖掘 |
---|
![]() |
问题 |
|
監督式學習 (分类 · 回归 ) |
|
聚类 |
|
降维 |
|
结构预测 |
|
异常检测 |
|
神经网络 |
|
强化学习 |
|
理论 |
|
在机器学习和统计学领域,降维是指在某些限定条件下,降低随机变量个数,得到一组“不相关”主变量的过程。 降维可进一步细分为变量选择和 特征提取 两大方法。
变量选择假定数据中包含大量冗余或无关变量(或称特征、属性、指标等),旨在从原有变量中找出主要变量。现代统计学中对变量选择的研究文献,大多集中于 高维回归分析 ,其中最具代表性的方法包括:
特征提取 可以看作变量选择方法的一般化:变量选择假设在原始数据中,变量数目浩繁,但只有少数几个真正起作用;而 特征提取 则认为在所有变量可能的函数(比如这些变量各种可能的线性组合)中,只有少数几个真正起作用。有代表性的方法包括: